32,962 research outputs found

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Topological Properties of Spatial Coherence Function

    Full text link
    Topology of the spatial coherence function is considered in details. The phase singularity (coherence vortices) structures of coherence function are classified by Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function.Comment: 9 page

    Superconductivity in heavily boron-doped silicon carbide

    Full text link
    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC phase fractions and hence this lead to the question which of them participates in the superconductivity. Here we focus on a sample which mainly consists of hexagonal SiC without any indication for the cubic modification by means of x-ray diffraction, resistivity, and ac susceptibility.Comment: 9 pages, 5 figure

    Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    Get PDF
    International audienceUnderstanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.% Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope

    The qq-log-convexity of Domb's polynomials

    Full text link
    In this paper, we prove the qq-log-convexity of Domb's polynomials, which was conjectured by Sun in the study of Ramanujan-Sato type series for powers of π\pi. As a result, we obtain the log-convexity of Domb's numbers. Our proof is based on the qq-log-convexity of Narayana polynomials of type BB and a criterion for determining qq-log-convexity of self-reciprocal polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:1308.273

    On the qq-log-convexity conjecture of Sun

    Full text link
    In his study of Ramanujan-Sato type series for 1/π1/\pi, Sun introduced a sequence of polynomials Sn(q)S_n(q) as given by Sn(q)=k=0n(nk)(2kk)(2(nk)nk)qk,S_n(q)=\sum\limits_{k=0}^n{n\choose k}{2k\choose k}{2(n-k)\choose n-k}q^k, and he conjectured that the polynomials Sn(q)S_n(q) are qq-log-convex. By imitating a result of Liu and Wang on generating new qq-log-convex sequences of polynomials from old ones, we obtain a sufficient condition for determining the qq-log-convexity of self-reciprocal polynomials. Based on this criterion, we then give an affirmative answer to Sun's conjecture

    The branch processes of vortex filaments and Hopf Invariant Constraint on Scroll Wave

    Full text link
    In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(x,t)Z(\vec{x},t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the "exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the "exclusion principle" is also protected by topology.Comment: 9 pages, 5 figure

    Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2\rm CuFeO_2

    Full text link
    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2\rm CuFeO_2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with J2/J10.44J_2/J_1 \approx 0.44 and J3/J10.57J_3/J_1 \approx 0.57), as well as out-of-plane coupling (J_z, with Jz/J10.29J_z/J_1 \approx 0.29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.Comment: 4 pages, 4 figures, published in Phys. Rev. Let
    corecore